Telegram Group & Telegram Channel
Forwarded from RIML Lab (Amir Kasaei)
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Backdooring Bias into Text-to-Image Models

πŸ”Έ Presenter: Mehrdad Aksari Mahabadi

πŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

πŸ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/143
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Backdooring Bias into Text-to-Image Models

πŸ”Έ Presenter: Mehrdad Aksari Mahabadi

πŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

πŸ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/143

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless β€œ$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

RIML Lab from br


Telegram RIML Lab
FROM USA